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Abstract We have calwlated the critical exponent of the mekl-msulata transition for a Ume- 
dimensional network of random wires. The Harmltonian of this model is not explicitly defined, 
and so we do not bias our results towards the models with diagonal 01 offdiagonal disorder. 
which pmduce con0icting exponents. The wult is s = Y = 1.1OiO.05. which is in merit 
with other models using tight-binding Hamiltomans with off-diagonal disorder. We suggest thal 
pure wave inlerference is not the dominan? mecharus . m for Hamiltonians with diagonal disorder 
and !herefore some other physical process must be responsible for generating exponents af 
s = ” 1 1.5. 

1. Introduction 

Since the formulation of the scaling theory I1,2], great advances have been made in the 
study of Anderson localization. Of particular importance to this paper was the numerical 
confirmation of the scaling theory and the existence of the metal-insulator transition in three 
dimensions using a finite-size scaling technique [3,4]. Calculation of the critical exponents 
for the metal-insulator transition was also made possible by this method. Previously, an 
exponent for the metal-insulator transition of s = v = 1 had been obtained from the non- 
linear u-model using a truncated series expansion. However, the validity of this truncation 
has been called into question [5,6]. Numerical techniques, on the other hand are l i i t ed  
only by the availability of computer memory and CPU time and should therefore have 
provided us with definitive answers conceming the critical behaviour. Unfortunately, it is 
the results of these very techniques that have presented us with another problem. 

Consider the usual tight-binding Hamiltonian 

where E, labels the site energies and &, is the interaction between nearest-neighbour sites. 
We could consider introducing disorder into the Hamiltonian in one of two ways: 

(i) Choose ct randomly from a uniform distribution of width W, while keeping K, fixed. 
This is the model studied by Anderson in his original paper on the ‘Absence of diffusion 
in certain random lattices’ [7]. 

(ii) Keep &, constant and vary the off-diagonal coupling. 

Both these models belong to the orthogonal universality class and are thw predicted 
to exhibit identical critical behaviour [SI. However, results from extensive numerical 
experiments clearly show that they do not [9]. Model (i) gives an exponent of s = U N 1.5, 
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while model (ii) gives s = U = 1.0. When these numerical experiments are performed, the 
two models are driven through the transition in different ways: for model (i), the disorder 
characterized by the width of the site energy distribution is varied, while for model (ii) it 
is the energy that is changed. Whether the difference in the critical exponents is due to 
fundamentally different physical processes, or due to the numerical method of forcing the 
transition, is not clear. 

In this paper, we have studied the metal-insulator transition using a network of random 
one-dimensional wires. The underlying Hamiltonian of this model is not explicitly defined 
and thus we are not biased towards one or other of the two models outlined above. Such 
network models have been used before for studying, amongst other things, the integer 
quantum Hall effect [IO] and the quantum percolation problem [ I l l .  

P M Bell and A MacKinnon 

2. The model 

Our system consists of a d-dimensional network of random onedimensional wires. For 
simplicity, an example of a two-dimensional system is shown in figure 1. For those requiring 
physical justification of this model, it can be thought of as the underlying lattice formed by a 
system constlucted from disordered hypercubes. In direct analogy with the long-strip method 
of MacKinnon and Kramer 13.41, we consider continually adding M"-" hypercubes, in the 
form of a slice, to the system. Then, the system has a finite cross section of M'd-lJ, but an 
effectively unbounded length since we can add an arbitrary number of slices (see figure 2). 

%-- 

WE- -- 

w,- 

I 
wire 

LongiNdinal wire 

Figure 1. A two-dimensional network of random wires. The wave are fed in along che 
longitudinal wires and propagate thmugh the system. satisfying certain conditlons at the nodes. 
The system is finite in the transverse direC6oo. but effectively unbounded in thc LongiNdid 
direction. 

Now, close to the metal-insulator transition electronic transport is dominated by a single 
channel [12,13]. Since this is the region of interest, each hypercube can be considered 
simply as d one-dimensional wires (the conducting channels) connecting opposite faces and 
the wire network picture of figure 1 begins to emerge. 



Critical exponent of the metal-insulator transition 8339 

M=5 

L+1 L 
Figure 2. Building the sysrem from two-dunensional hypercubes. A slice of width M = 5 is 
added to the system, increasng the Len@ from L to L + 1. This pmeas is amnued unril L 
is sufficiently large. 

Waves propagating on this network must satisfy certain conditions at each node, where 
the wires intersect with each other. For a d-dimensional network, these conditions are (from 
elementary quantum mechanics): 

(i) The wavefunction must be single valued at any point in space. Thus, if the waves 
on the 2d wires connected by a given node are $1. $ 2 , .  . . , $U, then the condition at the 
node is 

$, =$*=...=*U. (2) 

(ii) The first derivative of the wavefunctions must be continuous at any point in space, 
which is just equivalent to current conservation. Thus, at the node 

zd 

=cl 
"=l 

(3) 

where all the derivatives are defined as positive towards the node. 

3. Algorithm 

Consider the situation illustrated in figure 3, which is a two-dimensional network. (In fact 
this discussion is sufficiently general that it is valid for any dimension, but the graphical 
representation is far simpler and more obvious in only two dimensions. Furthemore, in 
this paper we present results for a three-dimensional network only.) 

If we can derive a transfer matrix T d  relating the amplitude and derivative of a wave 
at one end of a one-dimensional wire to the amplitude and derivative at the other end, then 
we can calculate the amplitude and derivative of all the waves into the nodes labelled set 1 
by applying T,I in tum to the set of input wave amplitudes (@I, . . . , $M)  and derivatives 
($;. . . . , $$I. 
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Node Node  Node 
Set 1 Set 2 Set  3 

TIP../-- 

% ,%’- 

Vr,@ - 
Figure 3. A two-dimensional system of cross seclion M = 4. The b’ansfer maIrix Tm is 
applied to the input waves and their derivatives. @I, J; etc to determine the amplitudes of the 
waves a! each node on no& set 1. The derivative of the waves into the nodes on no& set 1 
is also determined by this calculation. The downward pointing m w s  indicate lhe derivatives 
of the waves along the Vansverse wires on node set I, calculated using matrix Tdcr. With this 
information, the derivatives of the waves leaving node set 1 towards node set 2 can be calculated 
using wndition (3) and the pmcess can be repeated for node set 2. Periodic boundary wnditiws 
are used in lhe bansverse direction. 

Now given a matrix T,,, which determines the derivatives at either end of a one- 
dimensional wire given the amplitudes, we can calculate the derivatives into and out of 
each node along the transverse wires on set 1, since we know the amplitudes at these nodes. 

Finally, by applying condition (3) the derivatives of the waves leaving the nodes on set 
1 can be determined. The entire process can then be repeated for the nodes on set 2 and so 
on. In effect we have a recursion relation, which we simply continue to iterate. 

All that is left to do is to determine the matrices T d  and Tdsr. 

4. Deriving the mahices 

Because of the timereversal symmetry, we can follow the behaviour of wavefunctions of 
the form 

$1 = A I  coskx + Blsinkx (4) 

where AI ,  B1 are real amplitudes. Now, let $1 be the wavefunction on one side of a one- 
dimensional random wire and let Jrz be the wavefunction on the other side. If we reset the 
origin to be on the same side of the wire as $1. then the amplitude and derivative of $1 on 
that side will be 

@I@) = AI $;KO = kBi. (5) 

Now, we assume that at each node the wires are connected by a small piece of uniform 
material. Then, even in the limit that this piece of material becomes vanishingly small, the 
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value of k for the waves on the 2d wires, conne&ed by a given node, will be the same 
at that node. The& k becomes irrelevant in the cuirent conservation condition ~(3) and can 
therefore be ignored in OUT 8alculations. So we daii write 

, 

+rE(O) = BI.  

Thus, it is possible to write 

where T& is a real 2 x 2,tiansfer matrix for the onedimensional wire. This h s f e r  mahjx 
is easily derived from the conventional transfer matrix for tiavelling waves 

where r and f are the complex reflection and transmission cckfficidnk for the wile. If the 
travelling waves on either side of the wire have amplitudes, for h e  forward and reverse 
travelling parts, which are complex conjugates of each other; Trsal can be obtained by 
superposing these paas and calculating the real amplitudes to give 

Txa~ = 

where 4, and 4 are the' reflection i d  transmission phase respectively. 
Now, our model also requires us to determine the matrix Tk. which r e l a b  the 

derivatives at both end points of a wire to the amplitudes at those end points. Rearranging 
the top row of equation (7) gives 

&o) = {[(l/ltl)COS($t) + ( I ~ I / I ~ I ) ~ ~ ( & - ~ ) J / [ ( ~ / I ~ I )  gi(+tt) + ( I ~ I / I ~ D S ~ +  -&)I} 

x @l(o) - { 1/[(1/Itl) sin(&) + ( I ~ I / I ~ I ) s ~ ~ ( &  - A)] )+~(Z) .  (10) 

!?quation (7) can then be rearranged to give 

and the top row of this matrix equation gives 

Because we have chosen to define the derivative out of a node to be negative in condition 
(3) 
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where 

It is important to note that there is a possibility for the elements of Tbr to become 
infinite. These events can plague numerical experiments and so we &fine our model so 
that this eventuality cannot occur. By studying the eigenvalues of the transmission mabix 
for a simple system consisting of only one transverse wire, we determined that the elements 
of Td, becoming infinite corresponded to a situation where either the symmetric or the 
antisymmetric part of the wavefunction was transmitted and the other part was reflected 
back along the longitudinal links. For this situation to occur, it is necessary for the values of 
t ,  & and to be chosen appropriately from their own particular distributions. These events 
were found to happen so rarely (perhaps once every 1 ooOooO times) that we concluded 
that they could be ignored. This was &ne by choosing the value of the transmission phase 
from a restricted distribution, the portion being forbidden lying in the range that would 
cause a numerical instabitity. This is an inherent problem with the transfer matrix method: 
in effect the problem we are solving is, ‘What went in, in order to give these outputs?’. 
We have obviously then found situations where no combinations of the inputs can possibly 
give these outputs, hence there is no solution to the problem in this formulation. In any 
case, universality arguments allows us to ignore these events since we do not expect that 
the exponents will be changed by doing so, even though the critical disorder might be. 

Disorder is introduced into our model by the choice of the phase and amplitude of 
the reflection and transmission coefficients appearing in matrices (9) and (14). Azbel 1141 
and Pendry 1151 argue that the transmission through disordered one-dimensional systems 
is dominated by tunnelling via eigenstates in the system. Azbel has studied the tunnelling 
via a single eigenstate, while Pendry suggests that, for very long systems, the transmission 
occurs via a series of eigenstates, which he terms a necklace. Azbel determined a very 
simple expression for the distribution of the transmission amplitude 

p(ltl) = - - exp (-LILO) < It1 < t (15) (3 I:I 
where the ratio LILO defines the disorder in the system. For our purposes, the expression 
obtained by Azbel is perfectly adequate. Furthermore, it is particularly easy to implement 
numerically. Azbel’s formula is the simplest, physically justifiable distribution that we can 
choose. Again, universality arguments suggest that the actual form of the distribution should 
not change the values of the exponents. 

If we assume only elastic scamring, then current conservation gives 

lt12 + lr1’ = 1 (16) 
so determining 111 also fixes the value of lr[. As is usual in these calculations, we 
assume phase randomization across the wires and no correlation between the reflection and 
transmission phase. Thus, our matrices (9) and (14) are parameterized by three numbers: the 
transmission amplitude Itl, which is selected from the distribution (15) for a given disorder, 
and the reflection and transmission phases, which are selected randomly and independently 
from a uniform [O, 277) distribution, subject to the constraint that the elements of matrix 
Tdsr remain finite. 

Our model of propagating real wavefunctions in a random network is now completely 
described. 
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5. Scaling 

MacKinnon and Kramer [3,4] showed that the renormalized localization length 

A = h w / M  (17) 

where b M  is the localization length for a system of cross-section M d - ' ,  obeys a scaling 
relationship of the form 

dInh/dInM = X(lnA) (18) 

where 

A = f (C/W (19) 

and C can be identified as the localization length of the infinitely wide system. Close to the 
metal-insulator transition ~ ( h )  N 0 and therefore 

I n n  =In& + ( r  - rc)AMa (20) 

where r is the disorder parameter, which is changed to drive the system through the transition 
and 

a = ax/ainajx=,  

is the logarithmic derivative of x at x = 0. 
Comparing equations (19) and (20) we see that 

Y lr - rc1-'". 

A similar fixed-point analysis on the p function of Abrahams ef al [2] gives the following 
relations 

U N I T  - r,ls (22) 

for the conductivity U on the extended side and 

N Ir - rCI-" (23) 

on the localized side of the transition. Since U N 5-' in the localized regime, we have 

s = v = l f c i  (24) 

and thus calculating (Y gives us the required exponents s and U. 
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* M = 9  
. M = 8  
a M = 7  
. M = 6  
4 M = 5  
o M = 4  

2 0.54 0.56 0.58 0.6 
Disorder 

Figure 4. Results obfained for the three-dimensional nelwork. The localization lengths have 
been deermined lo a sfatistical accuracy of 05%. The inset graph shows lhe resule obtained for 
systems with widlhs M = 4 to M = 9. The main graph shows a plM of log A versm disorder 
LILO in the region ofthe m i t i o n .  It is clear thal ulere is no common crossing point, hence 
the need for the widthdependent constant B ( M )  in e q d o n  (U). 

6. Analysis 

Simulatians in two-dimensions were perfanned with perfect transmission on the one- 
dimensional wires in the network, the only disorder occurring being due to a random phase 
change across each wire. In this case, we found that all states were localized as we expected. 
No further analysis was performed in this case since the model was defined in order to study 
the transition in three dimensions, 

To calculate a value for the critical exponent, we use equation (20) and study the 
behaviour of A as the system cross section Md-' and disorder are varied. The localization 
lengths =e extracted using the methcd outlined in references [4] and 1161. If we plot ln A 
as a function of disorder, for various values of M ,  then the critical disorder is determined 
by the intersection of the curves for differing M. It is normally found that not all the cwes 
cross in exactly the same place (see figure 4). For this reason, we modify equation (20) 
by the addition of some width-dependent constant B, which corrects for the fact that the 
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lnA = r A W  + B ( M ) .  (25) 

We then select points in the transition region and perform a non-linear l k t  squares fit t6 
determine the value of a. The transition region can be determined by varying theaisorder 
'window', over which points are selected in order to cany out the fit. If the disorder 
'window' is too large, that is we have selected points too far from the transition point, then 
the quality of the fit becomes very poor, indicating that we need to select fewer points. 

~. 

7. Results and discussion 

We obtain for the exponent a a value of 

a = 0.91 k 0.04 (26) 

corresponding to the exponents for the metal-insulator transition of 

s = v = l.lOk0.05 '(27) 

which is in close agreement with the exponents obtained for models with off-diagonal 
disorder. The quality of the fit 'can be quantified by coinparing the value of the ,yz function 
with the number of degrees of freedom: ,yz should have a value approximately equal to the 
number of degrees of freedom. For this value of a we have a x2 of 47.73 and the number 
of degree$ of freedom is 45. 

Most of the literature on numerical investigations of the exponents has been done on 
the diagonal models and the exponents obtained of s = U = 1.5 are not in question. Little 
published work exisk on the off-diagonal models [17], save for the results of one of the 
authors of this paper [9]. Our kisult confirms that exponents of s = U 2: 1.0 can be obtained 
from numerical ejtperiment and therefore results from off-diagonal models are not due to 
some numericii error. We have also established some insight into the physical processes 
responsible for these exponents.' Clearly, the only physic2 ,process occurring in our model 
is the interference of the waves propagating through the network. Thus we suggest that 
this is not the dominant mechanism in the models with diagonal disorder and some other 
physical process must be responbible for producing exponents of s = v Y 1.5. 
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