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Abstract. We have calculated the critical exponent of the metal—insulator transition for a three-
dimensional network of random wires. The Hamiltonian of this model is not explicitly defined,
and so we do not bias our results towards the models with diagonal or off-diagonal disorder,
which produce conflicting exponents, The result is ¢ == v = 1.10 £ 0.05, which is in agresment
with other models using tight-binding Hamiltonians with off-diagonal disorder. We suggest that
pure, wave interference is not the dominant mechanism for Hamiltonians with diagonal disorder

and therefore some other physical process must be responsible for generating exponeats of
s=v~l, 5

1. Introduction

Since the formulation of the scaling theory [1,2], great advances have been made in the
-study of Anderson localization, Of particular importance to this paper was the numerical
confirmation of the scaling theory and the existence of the metal-insulator transition in three -
dimensions using 2 finite-size scaling technique [3,4]. Calculation of the critical exponents
for the metal-insulator transition was also made possible by this method. Previously, an
"exponent for the metal-insulator transition of § = v = 1 had been obtained from the non-
linear ¢-model using a truncated series expansion. However, the validity of this truncation
has been called into question [5,6]. Numerical techniques, on the other hand, are limited
only by the availability of computer memory and CPU time and should therefore have
provided us with definitive answers concerning the eritical behaviour, Unfortunately, it is
the results of these very techniques that have presented us with another problem
Consider the usual tight-binding Hamﬂtoman

H= Z|z)s.<=|+2|:vum L )
N

where &; labels the site energies and Vj; is the interaction between nearest-neighbour sites.
‘We could consider introducing disorder into the Hamiltonian in one of two ways:

(1) Choose g; random]y from a uniform distribution of width W, while keeping V;; fixed.
This is the model studied by Anderson in his ongmal paper on the ‘Absence of diffusion
in certain random lattices® [7].

(ii) Keep s; constant and vary the off-diagonal coupling.

Both these models belong to the orthogonal universality class and are-thus predicted
to exhibit identical critical behaviour [8]. However, results from extensive numerical
experiments clearly show_that they do not [9]. Model (i) gives an exponent of s = v 2 1.5,
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while model (if) gives s = v = 1.0. When these numerical experiments are performed, the
two models are driven through the transition in different ways: for model (i), the disorder
characterized by the width of the site energy distribution is varied, while for model (ji) it
is the energy that is changed. Whether the difference in the critical exponents is due to
fundamentally different physical processes, or due to the numerical method of forcing the
transition, is not clear.

In this paper, we have studied the metal-insulator transition using a network of random
one-dimensional wires. The underlying Hamiltonian of this mode] is not explicitly defined
and thus we are not biased towards one or other of the two models outlined above. Such
network models have been used before for studying, amongst other things, the integer
quantum Hail effect [10] and the quantum percolation problem [11].

2. The model

Qur system consists of a d-dimensional network of random one-dimensional wires. For
simplicity, an example of a two-dimensional system is shown in figure 1. For those requiring
physical justification of this model, it can be thought of as the underlying lattice formed by a
system constructed from disordered hypercubes. In direct analogy with the long-strip method
of MacKinnon and Kramer [3, 4], we consider continually adding M~ hypercubes, in the
form of a slice, to the system. Then, the system has a finite cross section of M@, but an
effectively unbounded length since we can add an arbitrary number of slices (see figure 2).

v
/ Node
Yo
2
¥,
— Transverse wire
k /

Longitudinal wire

Figure 1. A two-dimensional network of random wires. The waves are fed in along the
longitudinal wires and propagate through the system, satisfying certain conditions at the nodes.
The syster is finite in the transverse direction, but effectively unbounded in the longitudinal
direction.

Now, close to the metal-insulator transition electronic transport is dominated by a single
channel [12,13]. Since this is the region of interest, each hypercube can be considered
simply as d one-dimensional wires (the conducting channels) connecting opposite faces and
the wire network picture of figure 1 begins to emerge.
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111/

' Figure 2. Building the system from two-dimensional hypercubes. A slice of width M=5is
added to the system, increasing the length from L to L+ 1. This process is continued unul L
is sufﬁcnently large . .

" Waves propagating on this network must satisfy certain conditions at each node, where
the wires intersect with each other. For a d-dimensional network these conditions are (from
elementa.ry quantum mechanics): .

(i) The wavefunction must be single valued at any point in space. Thus, if the waves
- on the 24 wires connected by a given node are ¥, ¥, . .., Y24, then the condition at the
node is '

Vi=ta=...=%u. - .. @
(ii) The first derivative of the wavefunctions mhst be continuous at ény point in space,
which is just equivalent to current’gonservatjon. Thus, at the node
2 | | |
d
Z '1’:: =0 ) , (3)
dx _ .
n=1

where all the derivatives are defined as positive towards the node.

3. Algorithm

Consider the situation illustrated in figure 3, which is a two-dimensional network. (In fact
this discussion is sufficiently general that it is valid for any dimension, but the graphical
representation is far simpler.and more obvious in only two dimensions. Furthermore, in-
- this paper we present results for a three-dimensional network only.)

If we can derive a transfer matrix Ty relating the amplitude and derivative of a wave
at one end of a one-dimensional wire to the amplitude and derivative at the other end, then
we can calculate the amplitude and derivative of all the waves into the nodes labelled set 1
by applying Frea in turn to the set of mput wave’ amphtudes (Y1, ..., ¥y) and derivatives
(‘[rl LIRS ] ¢M )
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Figure 3. A two-dimensional system of cross seciion M = 4, The tansfer matix Trey is
applied 1o the input waves and their derivatives, i, ¥; etc 1o determine the amplitudes of the
waves at each node on node set 1. The derivative of the wavés into the nodes on node set 1
is also determined by this calculation. The downward pointing arrows indicate the derivatives
of the waves along the transverse wires on node set 1, caleulated using matrix Tger. With this
information, the derivatives of the waves leaving node set 1 towards node set 2 can be calculated

using condmon (3) and the process can be repeated for node set 2. Periodic boundary conditions
are used in the transverse dll'ectlo:l’l

Now given a matrix Tg,, which determines the derivatives at either end of a one-
dimensional wire given the amplitudes, we can calculate the derivatives into and out of
each node along the transverse wires on set 1, since we know the amplitudes at these hodes.

Finally, by applying condition (3) the derivatives of the waves leaving the nodes on set
1 can be determined. The entire process can then be repeated for the nodes on set 2 and so
on. In effect we have a recursion relation, which we simply continue to iterate.

All that is left to do is to deterrhine the matrices Tpeqr and Tg,.

4. Deriving the matrices

Because of the time-reversal symmetry, we can follow the behaviour of wavefuctions of
the form

¥ = A, coskx + By sinkx )]
where A;, B are real amplitudes. Now, let ¥ be the wavefunction on one side of a one-
dimensional random wire and let y be the wavefunction on the other side. If we reset the

origin to be on the same side of the wire as ¥, then the amplitude and derivative of ¢; on
that side will be _

WO =4 Y0 =kB. 5)

Now, we assumne that at each node the wires are connected by a small piece of uniform
material. Then, even in the limit that this piece of material becomes vanishingly small, the
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value of k for the waves on the 2d wires, connected by a given niode, will be the same
at that node. Then, k becomes irrelevant in the current conservation condition {3) and can
g therefore be 1gnored in our Galculations. So we cail write

Thus, it is possible to write | - 7 7 _ ' 7
Yalx) no] L
Vi | =T [m(o)] I

where Tm_; isareal 2 x 2 transfer matrix for the one-dlmensmnal wire. This uansfer matnx
is easﬂy denved from the conventaonal fransfer matnx for travelling waves

1/t~ rt | ' g .
[(r/:)* (l/t)*] S ®
where r.and ¢ are the complex reflection and transmission coefficiénts for the wire. If the
travelling waves on either side of the wire have amplitudes, for the forward and reverse

travelling parts, which are complex conjugates of each other; Ty can be obtained by
superposm g these parts and caIcuIatmg the real amplitudes to give

T [(l/lrl)cosqb:+(irI/Itl)cos(qbr @) (—1/lelysingy = (Ir|/12]) sin (¢ ~ @)](9)
ha 1/t sing; — Qr/1e1) sin(e — ) (1/iely cos g — (irl/1t]) cos (¢ — ¢

where ¢, and ¢; are the reflection and transmission phase respectively.

Now, our model also requires us to determine the matrix Tgr, which relates the
derivatives at both end points of a wire to the amphtudes at those end points. Rean'angmg
the top row of equation (7) gives -

¥ = { [1/140) cos(o + (irt/1D cos(qbr ~e)l/ [(I/It-l) Sin(qst) + U1/ 1t sin(gy — ¢t)]]
x 910 — {1/[€1/121) sin(gy) + (r1/ 16D sin{g — #) T} wa0). ;)
Equation (7) can then be rearranged o give . -
WO _s @] S
Pol-wll o w
and the top row of this matrix equation gives

366 = {17101/ sinh) + i) sin(g — Apo

[(1/1¢1) cos(ee) — (iri/1eD) cos{de — @)]}- -
[[(I/Irl)sm(qat)+c1r|/|r|>sm(¢r e W

_ -Because we have chosen to define the derivative out of a node to be negative in condmon

o) -
Tv@i_+ [w@] . - R
[wiu)] = Ter [l,(fz(x)] : o (13)
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where
(=L/ithcosih)~(lrIfieh cosighe—hr) ’ 1 ‘
(171t ) sindghy A7 1/ 1ED) sintehe—gy) (171¢5) skadeh)=(r1/1t ) sinlgr—dhy)
Ty = : (14
1 (~1/te) cos(@n)+( [/t ) costeh—)

(1/3e]) siughe)(|7 1/ [¢E) sinige—eh) (1/1¢1) sinter)+-{|r |/ 1¢]) sintg—)

It is important to note that there is a possibility for the elements of T, to become
infinite. These events can plagee numerical experiments and so we define our model so
that this eventuality cannot occur. By studying the eigenvalues of the transmission matrix
for a simple system consisting of only one transverse wire, we determined that the elements
of Tger becoming infinite corresponded to a situation where either the symmetric or the
antisymmetric part of the wavefunction was transmitted and the other part was reflected
back along the longitudinal links. For this situation to occur, it is necessary for the values of
£, ¢ and ¢ to be chosen appropriately from their own particular distributions. These events
were found to happen so rarely (perhaps once every 1000000 times) that we concluded
that they could be ignored. This was done by choosing the value of the transmission phase
from a restricted distribution, the portion being forbidden lying in the range that would
cause a numerical instability. This is an inherent problem with the transfer matrix method:
in effect the problem we are solving is, “What went in, in order to give these outputs?’.
We have obviously then found situations where no combinations of the inputs can possibly
give these outputs, hence there is no solution to the problem in this formulation. In any
case, universality arguments allows us to ignore these events since we do not expect that
the exponents will be changed by doing so, even though the critical disorder might be.

Disorder is introduced into our model by the choice of the phase and amplitude of
the reflection and transmission coefficients appearing in matrices (9) and (14). Azbel [14]
and Pendry [15] argue that the transmission through disordered one-dimensional systems
is dominated by tunnelling via eigenstates in the system. Azbel has studied the tunnelling
via a single eigenstate, while Pendry suggests that, for very long systems, the transmission
occurs via a series of eigenstates, which he terms a necklace. Azbel determined a very
simple expression for the distribution of the transmission amplitude

b= (2)m  ew(-LiL)<H< as

where the ratio L/Lg defines the disorder in the system. For our purposes, the expression
obtained by Azbel is perfectly adequate. Furthermore, it is particularly easy to implement
numerically. Azbel’s formula is the simplest, physically justifiable distribution that we can
choose. Again, universality arguments suggest that the actual form of the distribution should
not change the values of the exponents.

If we assume only elastic scattering, then current conservation gives

[t +1r> =1 (16)

so determining [¢| also fixes the value of |r|. As is usual in these calculations, we
assume phase randomization across the wires and no correlation between the reflection and
transmission phase. Thus, our matrices () and (14) are parameterized by three numbers: the
transmission amplitude |¢|, which is selected from the distribution (15) for a given disorder,
and the reflection and transmission phases, which are selected randomly and independently
from a vniform [0, 27) distribution, subject to the constraint that the elements of matrix
T4er remain finite.

Our model of propagating real wavefunctions in a random network is now completely -
described.
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5. Scaling
‘MacKinnon and Kramer [3, 4] showed that the renoi‘malized localization length
A=iy/M . ‘ an

where Ay is the localization length for a system of cross-section M" 1, obeys a scalmg
relatlonshlp of the form

" dinA/dInM = x(nA)- | R (18)
- where
A=FE/M) . - a9

and E can be identified as the localization length of the infinitely wide system. Close to the
metal—insulator transition x(A)~0 and therefore

InA=lnAc (z - w)AM® - 20)

~ where t isthe dlsorder parameter, which i is changed to drive the system through the transition
- and . _ ,

a=20dx/3InA] _,

is-the logarithmic derivative of y at x =0, ) ,
Comparing equations (19) and (20) we see that

E“h—nrw - o | @1

A 51m11ar fixed-point analysis on the 8 functxon of Abrahams ef al [2] gives the following
relations :

a;h-nr, | | @
fer the conductivity o on the extended e_ide and

sxle-e™ @
on the localized side of the transition. Sincero' =~ 7! in the localized regime, werhave '

s=v=1/a S e

and thus calquiating o gives us the required exponents s and v.
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Figure 4, Results obtained for the three-dimensional network. The localization lengths have
been determined to a statistical accuracy of 0.5%. The inset graph shows the results obtained for
systems with widths M = 4 to M = 9. The main graph shows 2 plot of log A versus disorder
L/Lp in the region of the wansition. It is clear that there is no common crossing point, hence
the need for the width-dependent constant B(M) in equation (25).
6. Analysis

Simulations in two-dimensions were performed with perfect transmission on the one-
dimensional wires in the network, the only disorder occurring being due to a random phase
change across each wire. In this case, we found that all states were localized as we expected.
No further analysis was performed in this case since the model was defined in order to study
the transition in three dimensions. '

To caiculate a value for the critical exponent, we use equation (20) and study the
behaviour of A as the system cross section M?~! and disorder are varied. The localization
lengths are extracted using the method outlined in references [4] and [161. If we plot ln A
as a function of disorder, for various values of M, then the critical disorder is determined
by the intersection of the curves for differing M. It is normally found that not all the curves
cross in exactly the same place (see figure 4). For this reason, we modify equation (20)
by the addition of some width-dependent constant B, which corrects for the fact that the
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curves do not all cross at the same point:
gnA=rAM“=+ BOD. o i (25)

We then select points in the transition region and perform a non-linear least squares fit to
détermine the value of @. The transition region can be determined by varying the ‘disorder
“window’, over which points are selected in order to carry out the fit. If the disorder
‘window’ is too large, that is we have selected points too far from the transition point, then
the quality of the fit becomes very poor, indicating that we need to select fewer points.

7. Results and discussion
We obtain for the exponent « a valué of
o= 0.91 +0.04 7 , o (26)
_ corresponding to the exponents for the metal-insulator transition of
s=v= 1.10£0.os S B @n

which is-in close agreement with the exponents obtained for models with off-diagonal
disorder. The quality of the fit can be quantiﬁed by comparing the value of the x% function -
with the number of degrees of freedom: x? should have a value apprommately equal to the
numbey of degrees of freedom. For this value of o we have a x? of 47.73 and the number
of degrees of freedom is 45. '

Most of the literature on numerical mvest:gatlons of the exponents has been done on
the diagonal models and the exponents obtained of s = v =~ 1.5 are not in question. Little
publishéd work exists on the off-diagonal models [17], save for the results of one of the
authors of this paper [9] Our result confirms that exponents of s = v ~ 1.0 can be obtained
from numerical éxperiment and therefore results from off-diagonal models are not due to
some numerical error. We have also established some insight into the physical processes
responsﬁ)le for these exponents CIearly, the only physical process occurring in our model
is the interference of the waves propagating through the network. Thus we suggest that
this is not the dominant mechanism in the models with diagonal disorder and some other
physical process must be responsible for producing exponents of s = v = 1.5.
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